Machine learning with R

Uwe Reichel, ELTE NYTK uwe.reichel@nytud.hu

October 8th 2025

What is machine learning?

- Learning the relations between properties of an object and its target value
- example: vowel classification F1=800Hz, F2=1200Hz, duration=0.1s → '/a:/'
- object: vowel segment
- target: its category

What is machine learning?

Definitions

- Features = independent variables: properties of an object, e.g. *F1*, *F2*, duration
- Feature vector: object representation [800, 1200, 0.1]
- Target = dependent variable: value, feature vector is to be mapped on; e.g. phoneme '/a:/'

Machine Learning = Learning to map objects represented as feature vectors to their target values

Which method to choose?

Are targets known?

- yes: supervised learning
- no: unsupervised learning

Of what variable type is the target?

- categorical: classification task
- continuous: regression task

When to choose feature-based machine learning ...

...instead of End-to-end Deep Neural Networks

- which learn their own object representations (such as bottleneck features, embeddings, etc.)
- if data is sparse (e.g. clinical data)
- if one can/wants to rely on expert features
- if explainability matters

Contents

- Supervised learning
 - The CARET R package
 - Instance-based learning
 - Classification and regression trees
 - Ensemble models
 - Support vector machines
 - Bias and Variance
- Unsupervised learning
 - Clustering

Supervised learning – the Caret package

Basics

- Classification and regression training
- wrapper around lots of machine learning methods provided by other packages
- allowing for a common workflow
- CRAN: https://cran.r-project.org/web/packages/caret/index.html
- Function reference: https://cran.r-project.org/web/packages/caret/caret.pdf
- Tutorial: https://topepo.github.io/caret/index.html

Workflow

- split data into train and test partition
- feature normalization
- model hyperparameter optimization and training
- 4 evaluation

Data split

- to allow for testing whether or not the model can generalize from the examples it was trained on
- if not: overadaption to training data
- stratified split: same relative class proportions in training and test partition
- Function: createDataPartition()

Data preprocessing

- normalization for mean and standard deviation
 - features usually have different mean and range values (e.g. fundamental frequency vs. formants)
 - thus contribute to different extent to classification, e.g. distance between objects more determined by features with high range
 - solution: z-transform $x \leftarrow \frac{x-\mathrm{mean}(x)}{\mathrm{std}(x)}$, so that all features have mean 0 and std 1
 - train(...preProc = c("center", "scale")...)

decorrelation

- features might be highly correlated and thus are redundant in training
- solution: orthogonalization by Principal component analysis
- train(...preProc = c("pca")...)

Training

- Tuning: hyperparameter optimization
 - grid-search: loop over all hyperparameter value combinations
 - for each value combination, do an **n-fold cross-validation**, i.e.
 - divide training set n times into fitting and development partition
 - fit the model to the data in the fitting partition and evaluate it on the development partition.
 - Keep the hyperparameter combination with highest mean evaluation score
- Fitting: fit model with optimized hyperparameters on training partition
- specify training procedure: tc ← trainControl()
- training: train(...trControl = tc ...)

Evaluation

- Apply the model to unseen test set: predict()
- measure model performance by comparing its output with the reference targets from test set
 - Classification: confusionMatrix()
 - Regression: RMSE()

Metrics

Classification

- classes balanced: Accuracy, i.e. percentage correct, Mean F-Score
- classes not balanced: Unweighted Average Recall or F-Score

Regression

- distance matters: Mean Absolute or Squared Error
- correlation matters, but not distance: Pearson Correlation
 Coefficient
- both matters: Concordance Correlation Coefficient

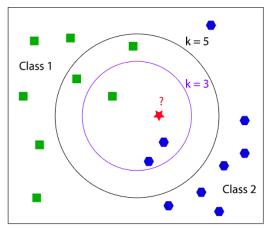
Instance-based learning

Overview

- supervised learning method
- task: classification
- features: categorical, continuous
- targets: categorical
- scenarios: exemplar theory modeling
- training: store feature vectors with their corresponding class (lazy learning)
- application: for an object to be classified select the k nearest feature vectors. Assign to the object the class with the highest support (weight sum) among the retrieved feature vectors.
- CARET method: kknn()

Instance-based learning

IBL example for different k



Ref.: https://machine-learning-tutorial-abi.readthedocs.io/

Instance-based learning

Classification:
$$\hat{f}(y) = \arg \max_{c \in C} \sum_{i=1}^{k} w_i \delta(c, f(x_i))$$

- v: object to be classified
- C: set of possible classes
- $\sum_{i=1}^{k} w_i \delta(c, f(x_i))$: support for class c
- k: number of nearest neighbors to be considered
- $f(x_i)$: class of neighbor x_i
- $\delta(a,b)$: 1 if a=b, else 0
- w_i : weight of neighbor x_i derived from its distance d to y by a Kernel function, e.g. the **inversion kernel** $\frac{1}{|d|}$

Parameters:

- kmax maximum number k of neighbors
- distance parameter of **Minkowski distance** (1=Manhattan, 2=Euclidean)
- kernel to map distance to weight; 'rectangular' unweighted, 'optimal' – design depends on kmax (i.e. for high k weight for high distance gets reduced more strongly), others - differ wrt extent the weight decreases with increasing distance

Classification and regression trees (CARTs)

Overview

- supervised learning method
- tasks: classification and regression
- features: categorical, continuous
- targets: categorical, continuous
- training: represent feature vectors as paths through tree, and targets as tree leaf labels
- application: follow path according to the object's feature vector. Assign to the object the terminal leaf label.
- CARET method: rpart2()
- Parameter: maximum tree depth maxdepth
 - deep trees can take more features and their interactions into account
 - flat trees are less prone to overadaption, and thus often generalize better

Training procedure

- divide and conquer: recursive partitioning of an object set into subsets
- resulting tree with one leaf for each final subset
- Regression tree: for each subset a simple regression model is fitted (which simply corresponds to the subset mean value)
- Classification Tree: to each subset a class label is assigned (which is the most frequent class in this subset)

CART examples

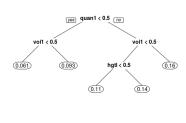
Classification

11 >= 0.53 dur < -0.18 12 < 0.24 12 >= 0.93 11 >= -0.69 11 >= -0.48 12 < -0.37 E 11 >= -0.68 dur < 0.44 2 dur >= -0.48 E 1 1 >= -0.68 T 2 \ \text{Y}

Target: Vowel class

Features: 1st and 2nd formant, duration

Regression



Target: Vowel duration

Features: Vowel height and position,

voicing of neighbor-Cs

Split criteria

- according to which variable the objects are to be divided?
- regression tree: search over variables (and split points) to minimize the variation within a subset
 - **example:** target T = phone duration, features $X_1 =$ prominence, $X_2 =$ sentence mode
 - by X₁ the phones can be divided into 2 subsets one for long, the other for short vowels
 - by X₂ the division yields overlapping subsets wrt to phone duration
 - \longrightarrow use X_1 to subdivide the objects

classification tree: use variable X containing the highest information about the target class T

$$\hat{X} = \arg \max_{V} [MI(X; T)]$$

$$MI(X; T) = H(T) - H(T|X)$$

- \blacksquare H(T): entropy (incertitude) of target value
- \blacksquare H(T|X): remaining incertitude if value of X is known
 - **example** T = vowel class, X = F2
 - \blacksquare MI(X; T): mutual information between the F2 and the vowel class
 - \blacksquare H(T): the incertitude of predicting the vowel, if no cues are given
 - H(T|X): the remaining incertitude to predict the vowel class if the F2-value is known

Termination criteria

- all objects in a subset have (about) the same target value
 - classification: all vowel objects in a subset are /i/s
 - regression: all phones in a subset have about the same duration
- the objects are not further dividable by their feature vectors
 - all phones within a subset are in prominent position of a declarative sentence
- the number of objects in a subset is below a specified threshold

Leaf labels

- classification: class occuring most often in the subset at that leaf
- regression: mean value of all targets at that leaf

Application

- follow the tree from the node to a leaf according to the object's feature values
- assign the leaf label to the object

Ensemble models

Overview

- supervised learning method
- **tasks:** classification and regression
- features: categorical, continuous
- targets: categorical, continuous
- CARET method: e.g. xgbTree()
- Parameters: number of trees (nrounds) maximum tree depth (max_depth), minimum number of items at a leaf (min_child_weight), learning rate (weight of each subsequent tree in correcting the preceding tree's error; eta), proportion of features a single tree is trained on (colsample_bytree), proportion of training items a single tree is trained on (subsample), minimum required loss reduction to further split a tree (gamma)

Ensemble models

- e.g. Random Forests, Gradient Boosting, Extreme Gradient Boosting
- Boosting: combining several weak classifiers to built a strong one (cf wisdom of crowds).
- Bagging: combining classifiers trained on parts of the training data
- consists of many classification (or regression) trees
- training:
 - see CARTs, each tree trained on feature and/or data subset
 - parallel training: trees are trained independently in parallel (e.g. Random Forest)
 - sequential training: trees are trained sequentially (Gradient Boosting); the later trees are trained to predict the residual, which is the deviation of the previous tree's predictions from the target value; i.e. later trees correct the errors of the previous trees
 - for classification these residuals refer to class probabilities

Ensemble models

application:

- the feature vector is accordingly subdivided in the forest
- each tree responds a class based on the feature values it sees
- classification result: most frequent class, if trees are trained in parallel (e.g. Random Forests); class with the highest summed probability, if trees are trained sequentially (Gradient Boosting)
- regression result: prediction mean (parallel training), or sum (sequential training)
- Fernández-Delgado et al. (2014): Random forest as best performing classifier (next to SVMs) for various data sets
- XGBoost and SVMs are currently the overall best performing classical (i.e. non deep-learning) machine learning methods

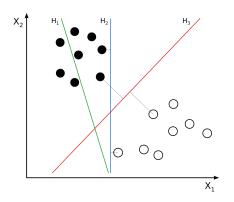


Support vector machines (SVM)

Overview

- for supervised learning
- task: binary classification, (regression)
- features: binary, continuous
- targets: categorical, (continuous)
- Caret method: svmLinear()
- Parameters: misclassification cost *C*
 - low values: soft margin, allowing for more errors
 - high values: hard margin, potentially overadapt to training data

Support vector machines (SVM)



Training:

- find the best plane (H3) in the feature space to separate two classes
- maximize the distance between the plane and the support vectors, i.e. the vectors closest to the plane

Support vector machines

Training cntd.

Kernel:

- similarity function $K(x, y) = f(x) \cdot f(y)$
- inner product of feature vectors x and y that are mapped to a higher dimensional space by $f(\cdot)$
- Kernel trick: if classes are not separable, then map feature vectors to a higher dimensional feature space and try again (increase of separability – but also overadaption!)
- linear, polynomial, and RBF Kernel functions: different distance calculation in the feature space
- robust against outliers, since these are ignored
- from two to n classes:
 - one SVM for each class pair c_i vs c_j , or
 - one SVM for each class c_i vs $\neg c_i$

Bias and Variance

High bias, low variance

- Simple model: low number of neighbors (KNN), flat/few trees (CART, XGBoost), low misclassification cost (SVM), low learning rate (XGBoost)
- Disadvantage: does not make use of all information available in training data, e.g. feature interactions
- Advantage: robustness; does not over-adapt to training data and works equally well unseen data

Low bias, high variance

- Complex model: high number of neighbors (KNN), deep/many trees (CART, XGBoost), high misclassification cost (SVM), high learning rate (XGBoost)
- Advantage: powerful; can make use of more information in training data
- Disadvantage: might overfit to training data and thereafter not work well on unseen data

Hyperparameter tuning by cross validation to balance power (high variance) and robustness (high bias)

Contents

- What is machine learning?
- Which method to choose?
- Supervised learning
- Unsupervised learning
 - Clustering

Overview

- unsupervised learning method
- **task:** partition of the data into similar objects
- features: categorical, continuous
- targets: yet unknown
- scenarios: intonation contour classification
- R packages: stats

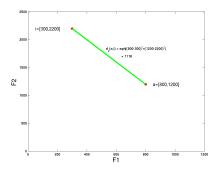
When to use?

if no categories are available yet

Objects

- feature vectors
- points in a Cartesian coordinate system

Distance (between feature vectors a and b)



continuous variables: e.g. *Euclidean distance*

$$d_{e}(a,b) = \sqrt{\sum_{i} (a_{i}-b_{i})^{2}}$$

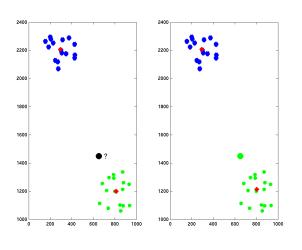
categorical variables: e.g. Hamming distance

$$d_h = \frac{\sum_{i:a_i \neq b_i} 1}{\sum_i 1}$$

example: distinctive feature vectors for /a/ and /i/ /a/ [low, back, spread, lax] /i/ [high, front, spread, tense] $d_h(a,i) = \frac{3}{4} = 0.75$

kmeans Algorithm

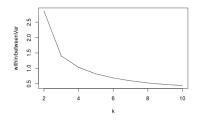
```
X \leftarrow objects to be clustered k \leftarrow intended number of clusters init: determine k clusterCenters until all clusters stable foreach x \in X
c \leftarrow \text{closest cluster}
c \leftarrow [c, x]
update clusterCenter(c)
endforeach
enduntil
```



- kmeans cluster center: centroid (mean vector)
- closest cluster: the cluster with the nearest centroid

How many clusters?

- i.e. determine k
- Maximize Cohesion: low within-cluster variability
- Maximize Separation: high between-cluster variability
- Maximize Generalisation: keep number of clusters as low as possible



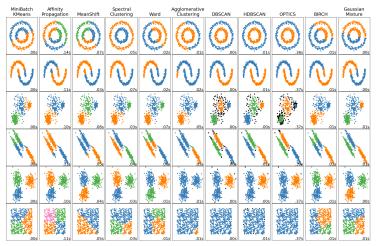
- best k at some **breakpoint** in $\frac{\text{withinClusterVariability}(k)}{\text{betweenClusterVariability}(k)}$ curve
- here: e.g. 3 or 6

Selected other clustering methods

- KMedoid as KMeans but using medoids (based on medians) instead of centroids (based on arithmetic means). More robust against outliers.
- **DBSCAN** based on neighborhood densities. Number of clusters does not need to be set but emerges from the data. More flexible cluster shapes, e.g. inner vs outer circle
- Hierarchical clustering: Creates a dendrogram which can be cut at any level resulting in more or less clusters.

comparison.html

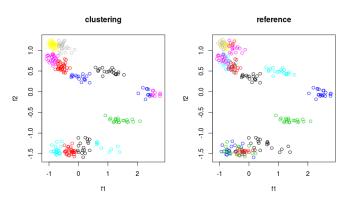
Selected other clustering methods



 ${\sf Ref.: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_examples/cluster_examples.}$

Comparing clustering output and reference

 Hungarian vowel classes by formants 1 and 2 (centered and scaled)



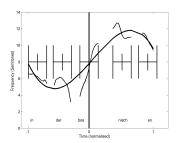
Validation of clustering results

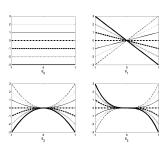
- without reference: cluster separability in terms of e.g. Mean Silhouette score, Dunn index
- with reference:
 - Mutual information: How much information about the reference classification is contained in the clustering output
 - I(X,Y) = H(X) H(X|Y), where X stands for the underlying reference classes and Y stands for the cluster IDs. H(X) is the entropy of X (the mean number of bits needed to encode values of X. H(X|Y) is the conditional entropy of X given that values of Y are known.
 - Adjusted Mutual information: corrects for chance-level agreement and limits the I range to (0, 1), higher is better.



Intonation contour classes

- derived from 3rd order polynomial stylization of f0 contours
- $f0 = \sum_{i=0}^{3} s_i t^i$ (t: time, s_i : coefficients to be fitted)





Resulting contour classes (k=6)

