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What is machine learning?

m Learning the relations between properties of an object and its
target value

= example: vowel classification
F1=800Hz, F2=1200Hz, duration=0.1s — '/a:/"

m object: vowel segment
m target: its category
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What is machine learning?

Definitions

m Features = independent variables: properties of an object,
e.g. F1, F2, duration

» Feature vector: object representation [800, 1200, 0.1]
m Target = dependent variable: value, feature vector is to be
mapped on; e.g. phoneme '/a:/’
Machine Learning = Learning to map objects represented as
feature vectors to their target values
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Which method to choose?

Are targets known?
m yes: supervised learning
= no: unsupervised learning

Of what variable type is the target?
m categorical: classification task

m continuous: regression task
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When to choose feature-based machine learning . ..

...instead of End-to-end Deep Neural Networks

= which learn their own object representations (such as
bottleneck features, embeddings, etc.)

n if data is sparse (e.g. clinical data)
» if one can/wants to rely on expert features

m if explainability matters
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m Supervised learning

The CARET R package
Instance-based learning
Classification and regression trees
Ensemble models

Support vector machines

Bias and Variance

= Unsupervised learning
u Clustering
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Supervised learning — the Caret package

Basics
m Classification and regression training

m wrapper around lots of machine learning methods provided by
other packages

allowing for a common workflow
C RA N . https://cran.r-project.org/web/packages/caret/index.html
Function reference: https://cran.r-project.org/web/packages/caret/caret.pdf

Tutorial: https://topepo.github.io/caret/index.html
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The Caret package

Workflow
split data into train and test partition
1 feature normalization
model hyperparameter optimization and training

1 evaluation
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The Caret package

Data split

m to allow for testing whether or not the model can generalize
from the examples it was trained on

m if not: overadaption to training data

m stratified split: same relative class proportions in training and
test partition

» Function: createDataPartition()
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The Caret package

Data preprocessing
= normalization for mean and standard deviation

m features usually have different mean and range values (e.g.
fundamental frequency vs. formants)

m thus contribute to different extent to classification, e.g.
distance between objects more determined by features with
high range

m solution: z-transform x <
mean 0 and std 1

m train(...preProc = c(“center”, “scale”) ...)

= decorrelation

—X_Sﬁgs(x), so that all features have

m features might be highly correlated and thus are redundant in
training

m solution: orthogonalization by Principal component analysis

m train(...preProc = ¢(“pca”) ...)
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The Caret package

Training
= Tuning: hyperparameter optimization

m grid-search: loop over all hyperparameter value combinations

m for each value combination, do an n-fold cross-validation, i.e.

= divide training set n times into fitting and development
partition

m fit the model to the data in the fitting partition and evaluate it
on the development partition.

m Keep the hyperparameter combination with highest mean
evaluation score

m Fitting: fit model with optimized hyperparameters on training
partition

» specify training procedure: tc < trainControl()

m training: train(...trControl = tc ...)
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Evaluation

Apply the model to unseen test set: predict()
measure model performance by comparing its output with the
reference targets from test set

Classification: confusionMatrix()
Regression: RMSE()
Metrics

Classification
classes balanced: Accuracy, i.e. percentage correct, Mean
F-Score
classes not balanced: Unweighted Average Recall or
F-Score

Regression
distance matters: Mean Absolute or Squared Error
correlation matters, but not distance: Pearson Correlation
Coefficient
both matters: Concordance Correlation Coefficient
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Instance-based learning

Overview

supervised learning method

task: classification

features: categorical, continuous
targets: categorical

scenarios: exemplar theory modeling

training: store feature vectors with their corresponding class (lazy
learning)

application: for an object to be classified select the k nearest
feature vectors. Assign to the object the class with the highest
support (weight sum) among the retrieved feature vectors.

CARET method: kknn()
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Instance-based learning

IBL example for different k

Class 1

@ Class2
L

Ref.: https://machine-learning-tutorial-abi.readthedocs.io/
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Classification: f(y) = arg maxcec le'(:l w;o(c, f(xi))
y: object to be classified
C: set of possible classes
Zf-‘zl w;d(c, f(x;)): support for class ¢
k: number of nearest neighbors to be considered
f(x;): class of neighbor x;
d(a, b): 1if a=b, else 0
w;: weight of neighbor x; derived from its distance d to y by a
Kernel function, e.g. the inversion kernel ﬁ
Parameters:

kmax — maximum number k of neighbors

distance — parameter of Minkowski distance (1=Manhattan,
2=Euclidean)

kernel — to map distance to weight; 'rectangular’ — unweighted,
‘optimal’ — design depends on kmax (i.e. for high k weight for
high distance gets reduced more strongly), others — differ wrt
extent the weight decreases with increasing distance
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Overview
supervised learning method
tasks: classification and regression
features: categorical, continuous
targets: categorical, continuous

training: represent feature vectors as paths through tree, and
targets as tree leaf labels

application: follow path according to the object’s feature
vector. Assign to the object the terminal leaf label.

CARET method: rpart2()

Parameter: maximum tree depth maxdepth
deep trees can take more features and their interactions into
account
flat trees are less prone to overadaption, and thus often
generalize better
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Classification and regression trees

Training procedure

m divide and conquer: recursive partitioning of an object set into
subsets

m resulting tree with one leaf for each final subset

m= Regression tree: for each subset a simple regression model is
fitted (which simply corresponds to the subset mean value)

m Classification Tree: to each subset a class label is assigned
(which is the most frequent class in this subset)
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Classification and regression trees

CART examples

Classification Regression
f25--081

N

mmg f1>=-u.7/ }»-uza é g hgtl <05
dur>=0£ hmm ®/ dur\>=-u.48

Target: Vowel duration
Target: Vowel class 8

. Features: Vowel height and position,
Features: 1st and 2nd formant, duration g P

voicing of neighbor-Cs
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Classification and regression trees

Split criteria
m according to which variable the objects are to be divided?

= regression tree: search over variables (and split points) to
minimize the variation within a subset
= example: target T = phone duration, features X; =
prominence, X, = sentence mode
m by Xj the phones can be divided into 2 subsets one for long,
the other for short vowels
m by X, the division yields overlapping subsets wrt to phone
duration
m — use Xj to subdivide the objects
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Classification and regression trees

m classification tree: use variable X containing the highest
information about the target class T

A~

X = argm‘?x[MI(X; T)]
MI(X;T) = H(T)— H(T|X)

m H(T): entropy (incertitude) of target value

» H(T|X): remaining incertitude if value of X is known
example T = vowel class, X = F2

MI(X; T): mutual information between the F2 and the vowel class
H(T): the incertitude of predicting the vowel, if no cues are given
H(T|X): the remaining incertitude to predict the vowel class if the
F2-value is known
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Classification and regression trees

Termination criteria
= all objects in a subset have (about) the same target value

m classification: all vowel objects in a subset are /i/s
m regression: all phones in a subset have about the same duration

m the objects are not further dividable by their feature vectors
w all phones within a subset are in prominent position of a
declarative sentence

m the number of objects in a subset is below a specified
threshold
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Classification and regression trees

Leaf labels

m classification: class occuring most often in the subset at that
leaf

m regression: mean value of all targets at that leaf
Application

u follow the tree from the node to a leaf according to the
object’s feature values

m assign the leaf label to the object
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Overview
supervised learning method
tasks: classification and regression
features: categorical, continuous
targets: categorical, continuous
CARET method: e.g. xgbTree()
Parameters: number of trees (nrounds) maximum tree depth
(max_depth), minimum number of items at a leaf
(min_child_weight), learning rate (weight of each subsequent
tree in correcting the preceding tree's error; eta), proportion
of features a single tree is trained on (colsample_bytree),
proportion of training items a single tree is trained on

(subsample), minimum required loss reduction to further split
a tree (gamma)
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e.g. Random Forests, Gradient Boosting, Extreme Gradient
Boosting
Boosting: combining several weak classifiers to built a strong
one (cf wisdom of crowds).
Bagging: combining classifiers trained on parts of the training
data
consists of many classification (or regression) trees
training:
see CARTS, each tree trained on feature and/or data subset
parallel training: trees are trained independently in parallel
(e.g. Random Forest)
sequential training: trees are trained sequentially (Gradient
Boosting); the later trees are trained to predict the residual,
which is the deviation of the previous tree's predictions from
the target value; i.e. later trees correct the errors of the

previous trees
for classification these residuals refer to class probabilities
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application:

the feature vector is accordingly subdivided in the forest

each tree responds a class based on the feature values it sees
classification result: most frequent class, if trees are trained
in parallel (e.g. Random Forests); class with the highest
summed probability, if trees are trained sequentially
(Gradient Boosting)

regression result: prediction mean (parallel training), or sum
(sequential training)

Fernandez-Delgado et al. (2014): Random forest as best
performing classifier (next to SVMs) for various data sets
XGBoost and SVMs are currently the overall best

performing classical (i.e. non deep-learning) machine
learning methods
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Support vector machines (SVM)

Overview

for supervised learning

task: binary classification, (regression)
features: binary, continuous

targets: categorical, (continuous)

|
|
[
[
» Caret method: svmLinear()

m Parameters: misclassification cost C

= low values: soft margin, allowing for more errors
= high values: hard margin, potentially overadapt to training
data
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Support vector machines (SVM)

Training;:
» find the best plane (H3) in

the feature space to separate
two classes

= maximize the distance
between the plane and the
support vectors, i.e. the
vectors closest to the plane
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Support vector machines

Training cntd.
u Kernel:
m similarity function K(x,y) = f(x) - f(y)
= inner product of feature vectors x and y that are mapped to a
higher dimensional space by 7(+)

m Kernel trick: if classes are not separable, then map feature
vectors to a higher dimensional feature space and try again
(increase of separability — but also overadaption!)

m linear, polynomial, and RBF Kernel functions: different
distance calculation in the feature space

m robust against outliers, since these are ignored

= from two to n classes:

= one SVM for each class pair ¢; vs ¢;, or
= one SVM for each class ¢; vs —¢;
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Bias and Variance

High bias, low variance

= Simple model: low number of neighbors (KNN), flat/few trees (CART,
XGBoost), low misclassification cost (SVM), low learning rate (XGBoost)

= Disadvantage: does not make use of all information available in training
data, e.g. feature interactions

u Advantage: robustness; does not over-adapt to training data and works
equally well unseen data

Low bias, high variance

= Complex model: high number of neighbors (KNN), deep/many trees
(CART, XGBoost), high misclassification cost (SVM), high learning rate
(XGBoost)

= Advantage: powerful; can make use of more information in training data

= Disadvantage: might overfit to training data and thereafter not work well
on unseen data

Hyperparameter tuning by cross validation to balance power (high variance)
and robustness (high bias)
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m What is machine learning?
m Which method to choose?

u Supervised learning
m Unsupervised learning
m Clustering
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Clustering

Overview
= unsupervised learning method
m task: partition of the data into similar objects
m features: categorical, continuous
m targets: yet unknown
m scenarios: intonation contour classification
m R packages: stats
When to use?

m if no categories are available yet
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Clustering

Objects

m feature vectors

m points in a Cartesian coordinate system

Distance (between feature vectors a and b)

i=[300,2200]

d,(a) = Sart(600-300)°(1200-2200)")

2=[800,1200]

500 500 000

F1

1200

= continuous variables: e.g.
Euclidean distance
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Clustering

= categorical variables: e.g. Hamming distance

Zi:a,-;éb,- 1
21

» example: distinctive feature vectors for /a/ and /i/
/a/ [low, back, spread, lax]
/i/ [high, front, spread, tense]
dn(a,i) =2 =075

dp
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Clustering

kmeans Algorithm

X < objects to be clustered

k < intended number of clusters
init: determine k clusterCenters
until all clusters stable

foreach x € X

¢ < closest cluster
c+[c X
update clusterCenter(c)
endforeach
enduntil
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Clustering
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Clustering

How many clusters?
m i.e. determine k
m Maximize Cohesion: low within-cluster variability
m Maximize Separation: high between-cluster variability
|

Maximize Generalisation: keep number of clusters as low as

possible
HER m best k at some breakpoint in
5 o withinClusterVariability(k) curve
£ . betweenCluster Variabilty (k)
v m here:eg. 30r6
2 4 s s 0
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Clustering

Selected other clustering methods

= KMedoid as KMeans but using medoids (based on medians)
instead of centroids (based on arithmetic means). More robust
against outliers.

m DBSCAN based on neighborhood densities. Number of
clusters does not need to be set but emerges from the data.
More flexible cluster shapes, e.g. inner vs outer circle

m Hierarchical clustering: Creates a dendrogram which can be
cut at any level resulting in more or less clusters.
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Clustering

Selected other clustering methods

MiniBatch Affinity Spectral Agglomera tive Gaussian
KMeans  Propagation  MeanShift  Clustering Ward Clustering  DBSCAN HDBSCAN OPTICS BIRCH Mixture

1000

o

- - 05s|
o0 1 o3 014 .
S Ligh 25 s fighe
g : g $ ||
A

Ref.: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_

comparison.html
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Clustering

Comparing clustering output and reference

» Hungarian vowel classes by formants 1 and 2 (centered and

scaled)
clustering reference
o |
w | 8- o
° sage o o
o,
o 2 ° o& o 27
w | o |
N “@ans o N
= | 2
- L o0% A
05 508 8
T T T T T T T T
1 0 1 2 -1 0 1 2
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Clustering

Validation of clustering results

= without reference: cluster separability in terms of e.g. Mean
Silhouette score, Dunn index

m with reference:

m Mutual information: How much information about the
reference classification is contained in the clustering output

m [(X,Y)=H(X)— H(X]Y) , where X stands for the
underlying reference classes and Y stands for the cluster IDs.
H(X) is the entropy of X (the mean number of bits needed to
encode values of X. H(X]|Y) is the conditional entropy of X
given that values of Y are known.

m Adjusted Mutual information: corrects for chance-level
agreement and limits the / range to (0, 1), higher is better.
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Clustering

Intonation contour classes

m derived from 3rd order polynomial stylization of fO contours
» 0= ?:0 sit! (t: time, s;: coefficients to be fitted)

+
|
+
-

der bos nisch

) g 1 g
Time (normalised) s 5

Uwe Reichel Machine learning with R



Clustering

Resulting contour classes (k=6)
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