
Machine learning with R

Uwe Reichel
NYTI, MTA

uwe.reichel@nytud.mta.hu

November 9th 2022

Uwe Reichel, NYTI Machine learning with R

What is machine learning?

Learning the relations between properties of an object and its
target value

example: vowel classification
F1=800Hz, F2=1200Hz, duration=0.1s −→ ’/a:/’

object: vowel segment

target: its category

Uwe Reichel, NYTI Machine learning with R

What is machine learning?

Definitions

Features = independent variables: properties of an object,
e.g. F1, F2, duration

Feature vector: object representation [800, 1200, 0.1]

Target = dependent variable: value, feature vector is to be
mapped on; e.g. phoneme ’/a:/’

Machine Learning = Learning to map objects represented as
feature vectors to their target values

Uwe Reichel, NYTI Machine learning with R

Which method to choose?

Are targets known?

yes: supervised learning method

no: unsupervised learning method

Of what variable type is the target?

categorical: classification task

continuous: regression task

Uwe Reichel, NYTI Machine learning with R

When to choose classical machine learning . . .

. . . instead of End-to-end Deep Neural Networks

if data is sparse (e.g. clinical data)

if one can/wants to rely on expert features

Uwe Reichel, NYTI Machine learning with R

Contents

Supervised learning
The CARET R package
Instance-based learning
Classification and regression trees
Ensemble models
Support vector machines
Bias and Variance

Unsupervised learning
Clustering

Uwe Reichel, NYTI Machine learning with R

Supervised learning – the Caret package

Basics

Classification and regression training

wrapper around lots of machine learning methods provided by
other packages

allowing for a common workflow

CRAN: https://cran.r-project.org/web/packages/caret/index.html

Function reference: https://cran.r-project.org/web/packages/caret/caret.pdf

Tutorial: https://topepo.github.io/caret/index.html

Uwe Reichel, NYTI Machine learning with R

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/caret.pdf
https://topepo.github.io/caret/index.html

The Caret package

Workflow

1 split data into train and test partition

2 feature normalization

3 model hyperparameter optimization and training

4 evaluation

Uwe Reichel, NYTI Machine learning with R

The Caret package

Data split

to allow for testing whether or not the model can generalize
from the examples it was trained on

if not: overadaption to training data

stratified split: same relative class proportions in training and
test partition

Function: createDataPartition()

Uwe Reichel, NYTI Machine learning with R

The Caret package

Data preprocessing

normalization for mean and standard deviation

features usually have different mean and range values (e.g.
fundamental frequency vs. formants)
thus contribute to different extent to classification, e.g.
distance between objects more determined by features with
high range

solution: z-transform x ← x−mean(x)
std(x) , so that all features have

mean 0 and std 1
train(. . . preProc = c(“center”, “scale”) . . .)

decorrelation
features might be highly correlated and thus are redundant in
training
solution: orthogonalization by Principal component analysis
train(. . . preProc = c(“pca”) . . .)

Uwe Reichel, NYTI Machine learning with R

The Caret package

Training

Tuning: hyperparameter optimization
grid-search: loop over all hyperparameter value combinations
for each value combination, do an n-fold cross-validation, i.e.
divide training set n times into fitting and development
partition
fit the model to the data in the fitting partition and evaluate it
on the development partition.
Keep the hyperparameter combination with highest mean
evaluation score

Fitting: fit model with optimized hyperparameters on training
partition

specify training procedure: tc ← trainControl()

training: train(. . . trControl = tc . . .)

Uwe Reichel, NYTI Machine learning with R

The Caret package

Evaluation

Apply the model to unseen test set: predict()

measure model performance by comparing its output with the
reference targets from test set

Classification: confusionMatrix()
Regression: RMSE()

Metrics

Classification
classes balanced: Accuracy, i.e. percentage correct, Mean
F-Score
classes not balanced: Unweighted Average Recall or
F-Score

Regression
distance matters: Mean Absolute or Squared Error
correlation matters, but not distance: Pearson Correlation
Coefficient
both matters: Concordance Correlation Coefficient

Uwe Reichel, NYTI Machine learning with R

Instance-based learning

Overview

supervised learning method

task: classification

features: categorical, continuous

targets: categorical

scenarios: exemplar theory modeling

training: store feature vectors with their corresponding class (lazy
learning)

application: for an object to be classified select the k nearest
feature vectors. Assign to the object the class with the highest
support (weight sum) among the retrieved feature vectors.

CARET method: kknn()

Uwe Reichel, NYTI Machine learning with R

Instance-based learning

Classification: f̂ (y) = arg maxc∈C
∑k

i=1 wiδ(c, f (xi))

y : object to be classified
C : set of possible classes∑k

i=1 wiδ(c , f (xi)): support for class c
k: number of nearest neighbors to be considered
f (xi): class of neighbor xi
δ(a, b): 1 if a=b, else 0
wi : weight of neighbor xi derived from its distance d to y by a
Kernel function, e.g. the inversion kernel 1

|d |
Parameters:

kmax – maximum number k of neighbors
distance – parameter of Minkowski distance (1=Manhattan,
2=Euclidean)
kernel – to map distance to weight; ’rectangular’ – unweighted,
’optimal’ – design depends on kmax (i.e. for high k weight for
high distance gets reduced more strongly), others – differ wrt
extent the weight decreases with increasing distance

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees (CARTs)

Overview

supervised learning method

tasks: classification and regression

features: categorical, continuous

targets: categorical, continuous

training: represent feature vectors as paths through tree, and
targets as tree leaf labels

application: follow path according to the object’s feature
vector. Assign to the object the terminal leaf label.

CARET method: rpart2()

Parameter: maximum tree depth maxdepth

deep trees can take more features and their interactions into
account
flat trees are less prone to overadaption, and thus often
generalize better

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

Training procedure

divide and conquer: recursive partitioning of an object set into
subsets

resulting tree with one leaf for each final subset

Regression tree: for each subset a simple regression model is
fitted (which simply corresponds to the subset mean value)

Classification Tree: to each subset a class label is assigned
(which is the most frequent class in this subset)

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

CART examples

Classification

Target: Vowel class

Features: 1st and 2nd formant, duration

Regression

Target: Vowel duration

Features: Vowel height and position,

voicing of neighbor-Cs

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

Split criteria

according to which variable the objects are to be divided?

regression tree: search over variables (and split points) to
minimize the variation within a subset

example: target T = phone duration, features X1 =
prominence, X2 = sentence mode
by X1 the phones can be divided into 2 subsets one for long,
the other for short vowels
by X2 the division yields overlapping subsets wrt to phone
duration
−→ use X1 to subdivide the objects

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

classification tree: use variable X containing the highest
information about the target class T

X̂ = arg max
V

[MI (X ;T)]

MI (X ;T) = H(T)− H(T |X)

H(T): entropy (incertitude) of target value

H(T |X): remaining incertitude if value of X is known
example T = vowel class, X = F2
MI (X ;T): mutual information between the F2 and the vowel class
H(T): the incertitude of predicting the vowel, if no cues are given

H(T |X): the remaining incertitude to predict the vowel class if the

F2-value is known

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

Termination criteria

all objects in a subset have (about) the same target value
classification: all vowel objects in a subset are /i/s
regression: all phones in a subset have about the same duration

the objects are not further dividable by their feature vectors

all phones within a subset are in prominent position of a
declarative sentence

the number of objects in a subset is below a specified
threshold

Uwe Reichel, NYTI Machine learning with R

Classification and regression trees

Leaf labels

classification: class occuring most often in the subset at that
leaf

regression: mean value of all targets at that leaf

Application

follow the tree from the node to a leaf according to the
object’s feature values

assign the leaf label to the object

Uwe Reichel, NYTI Machine learning with R

Ensemble models

Overview

supervised learning method

tasks: classification and regression

features: categorical, continuous

targets: categorical, continuous

CARET method: e.g. xgbTree()

Parameters: number of trees (nrounds) maximum tree depth
(max depth), minimum number of items at a leaf
(min child weight), learning rate (weight of each subsequent
tree in correcting the preceding tree’s error; eta), proportion
of features a single tree is trained on (colsample bytree),
proportion of training items a single tree is trained on
(subsample), minimum required loss reduction to further split
a tree (gamma)

Uwe Reichel, NYTI Machine learning with R

Ensemble models

e.g. Random Forests, Gradient Boosting, Extreme Gradient
Boosting

Boosting: combining several weak classifiers to built a strong
one (cf wisdom of crowds).

Bagging: combining classifiers trained on parts of the training
data

consists of many classification (or regression) trees
training:

see CARTs, each tree trained on feature and/or data subset
parallel training: trees are trained independently in parallel
(e.g. Random Forest)
sequential training: trees are trained sequentially (Gradient
Boosting); the later trees are trained to predict the residual,
which is the deviation of the previous tree’s predictions from
the target value; i.e. later trees correct the errors of the
previous trees
for classification these residuals refer to class probabilities

Uwe Reichel, NYTI Machine learning with R

Ensemble models

application:
the feature vector is accordingly subdivided in the forest
each tree responds a class based on the feature values it sees
classification result: most frequent class, if trees are trained
in parallel (e.g. Random Forests); class with the highest
summed probability, if trees are trained sequentially
(Gradient Boosting)
regression result: prediction mean (parallel training), or sum
(sequential training)

Fernández-Delgado et al. (2014): Random forest as best
performing classifier (next to SVMs) for various data sets

XGBoost and SVMs are currently the overall best
performing classical (i.e. non deep-learning) machine
learning methods

Uwe Reichel, NYTI Machine learning with R

Support vector machines (SVM)

Overview

for supervised learning

task: binary classification, (regression)

features: binary, continuous

targets: categorical, (continuous)

Caret method: svmLinear()

Parameters: misclassification cost C

low values: soft margin, allowing for more errors
high values: hard margin, potentially overadapt to training
data

Uwe Reichel, NYTI Machine learning with R

Support vector machines (SVM)

Training:

find the best plane (H3) in
the feature space to separate
two classes

maximize the distance
between the plane and the
support vectors, i.e. the
vectors closest to the plane

Uwe Reichel, NYTI Machine learning with R

Support vector machines

Training cntd.

Kernel:
similarity function K (x , y) = f (x) · f (y)
inner product of feature vectors x and y that are mapped to a
higher dimensional space by f (·)

Kernel trick: if classes are not separable, then map feature
vectors to a higher dimensional feature space and try again
(increase of separability – but also overadaption!)

linear, polynomial, and RBF Kernel functions: different
distance calculation in the feature space

robust against outliers, since these are ignored

from two to n classes:
one SVM for each class pair ci vs cj , or
one SVM for each class ci vs ¬ci

Uwe Reichel, NYTI Machine learning with R

Bias and Variance

High bias, low variance

Simple model: low number of neighbors (KNN), flat/few trees (CART,
XGBoost), low misclassification cost (SVM), low learning rate (XGBoost)

Disadvantage: does not make use of all information available in training
data, e.g. feature interactions

Advantage: robustness; does not over-adapt to training data and works
equally well unseen data

Low bias, high variance

Complex model: high number of neighbors (KNN), deep/many trees
(CART, XGBoost), high misclassification cost (SVM), high learning rate
(XGBoost)

Advantage: powerful; can make use of more information in training data

Disadvantage: might overfit to training data and thereafter not work well
on unseen data

Hyperparameter tuning by cross validation to balance power (high variance)
and robustness (high bias)

Uwe Reichel, NYTI Machine learning with R

Contents

What is machine learning?

Which method to choose?

Supervised learning

Unsupervised learning
Clustering

Uwe Reichel, NYTI Machine learning with R

Clustering

Overview

unsupervised learning method

task: partition of the data into similar objects

features: categorical, continuous

targets: yet unknown

scenarios: intonation contour classification

R packages: stats

When to use?

if no categories are available yet

Uwe Reichel, NYTI Machine learning with R

Clustering

Objects

feature vectors

points in a Cartesian coordinate system

Distance (between feature vectors a and b)

continuous variables: e.g.
Euclidean distance

de(a, b) =

√∑
i

(ai − bi)2

Uwe Reichel, NYTI Machine learning with R

Clustering

categorical variables: e.g. Hamming distance

dh =

∑
i :ai 6=bi

1∑
i 1

example: distinctive feature vectors for /a/ and /i/
/a/ [low, back, spread, lax]
/i/ [high, front, spread, tense]
dh(a, i) = 3

4 = 0.75

Uwe Reichel, NYTI Machine learning with R

Clustering

kmeans Algorithm

X ← objects to be clustered
k ← intended number of clusters
init: determine k clusterCenters
until all clusters stable

foreach x ∈ X

c ← closest cluster
c ← [c, x]
update clusterCenter(c)

endforeach

enduntil

Uwe Reichel, NYTI Machine learning with R

Clustering

kmeans cluster
center: centroid
(mean vector)

closest cluster: the
cluster with the
nearest centroid

Uwe Reichel, NYTI Machine learning with R

Clustering

Validation

how to determine a good number k of clusters?

Cohesion: low within-cluster variability

Separation: high between-cluster variability

Generalisation: keep number of clusters as low as possible

best k at some breakpoint in
withinClusterVariability(k)
betweenClusterVariabilty(k) curve

here: e.g. 3 or 6

Uwe Reichel, NYTI Machine learning with R

Clustering

Clusters and reference

Hungarian vowel classes by formants 1 and 2 (z-transformed)

Uwe Reichel, NYTI Machine learning with R

Clustering

Intonation contour classes

derived from 3rd order polynomial stylization of f0 contours

f 0 =
∑3

i=0 si t
i (t: time, si : coefficients to be fitted)

Uwe Reichel, NYTI Machine learning with R

Clustering

Resulting contour classes (k=6)

Uwe Reichel, NYTI Machine learning with R

